Client

Saturday, 21 September 2013

Processor and Microprocessor

Processor, Processor unit or Processing unit may refer to:

Computing

Central processing unit

Processing unit, in Von Neumann computer architecture, contains an arithmetic logic unit (ALU) and processor registers

Microprocessor, a CPU on one silicon chip as part of a microcomputer

Application-specific instruction-set processor, a component used in system-on-a-chip design

Graphics processing unit (GPU / VPU), a dedicated graphics rendering device for a personal computer or game console

Physics processing unit (PPU), a dedicated microprocessor designed to handle the calculations of physics

Digital signal processor, a specialized microprocessor designed specifically for digital signal processing

Network processor, a microprocessor specifically targeted at the networking application domain

Front end processor, a helper processor for communication between a host computer and other devices
Coprocessor

Floating-point unit

Data processing system, a system that translates or converts between different data formats

Word processor, a computer application used for the production of printable material

Audio processor, used in studios and radio stations

Microprocessors

A microprocessor incorporates the functions of a computer's central processing unit (CPU) on a single integrated circuit (IC), or at most a few integrated circuits. It is a multipurpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output. It is an example of sequential digital logic, as it has internal memory. Microprocessors operate on numbers and symbols represented in the binary numeral system.
The advent of low-cost computers on integrated circuits has transformed modern society. General-purpose microprocessors in personal computers are used for computation, text editing, multimedia display, and communication over the Internet. Many more microprocessors are part of embedded systems, providing digital control over myriad objects from appliances to automobiles to cellular phones and industrial process control.
Intel introduced its first 4-bit microprocessor 4004 in 1971 and its 8-bit microprocessor 8008 in 1972. During the 1960s, computer processors were constructed out of small and medium-scale ICs—each containing from tens to a few hundred transistors. These were placed and soldered onto printed circuit boards, and often multiple boards were interconnected in a chassis. The large number of discrete logic gates used more electrical power—and therefore produced more heat—than a more integrated design with fewer ICs. The distance that signals had to travel between ICs on the boards limited a computer's operating speed.
In the NASA Apollo space missions to the moon in the 1960s and 1970s, all onboard computations for primary guidance, navigation and control were provided by a small custom processor called "The Apollo Guidance Computer". It used wire wrap circuit boards whose only logic elements were three-input NOR gates.
The integration of a whole CPU onto a single chip or on a few chips greatly reduced the cost of processing power. The integrated circuit processor was produced in large numbers by highly automated processes, so unit cost was low. Single-chip processors increase reliability as there are many fewer electrical connections to fail. As microprocessor designs get faster, the cost of manufacturing a chip (with smaller components built on a semiconductor chip the same size) generally stays the same.
Microprocessors integrated into one or a few large-scale ICs the architectures that had previously been implemented using many medium- and small-scale integrated circuits. Continued increases in microprocessor capacity have rendered other forms of computers almost completely obsolete (see history of computing hardware), with one or more microprocessors used in everything from the smallest embedded systems and handheld devices to the largest mainframes and supercomputers.
The first microprocessors emerged in the early 1970s and were used for electronic calculators, using binary-coded decimal (BCD) arithmetic on 4-bit words. Other embedded uses of 4-bit and 8-bit microprocessors, such as terminals, printers, various kinds of automation etc., followed soon after. Affordable 8-bit microprocessors with 16-bit addressing also led to the first general-purpose microcomputers from the mid-1970s on.
Since the early 1970s, the increase in capacity of microprocessors has followed Moore's law; this originally suggested that the number of components that can be fitted onto a chip doubles every year. With present technology, it is actually every two years, and as such Moore later changed the period to two years.

No comments:

Post a Comment